LA-UR -82-2928. LA-UR--82-2928 an\? _¥3 050 - -
}

DE83 002064

Lo8 Alsmos Nations! Laborsiory is operated by the University of Californis for the United States Department of Energy undfer contract W-7405-ENG-36

MAS;
ILit
nTie: A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

E]

AutHoms) LINDA BRICE AND JOHN CONNELL

SUBMITTED T0O. PROGRAM CHAIRMAN, NCC '83
Atlantic Richfield Company
515 South Flower Street
Los Angeles, Califorria 90071

P —————) [] 1A YL

]

Py acospiance of this ariicie. the publisher recognizes that me U § Gevernment nataing & noneacivsive reyaity-free keense te Bubhsh or repraduce
9o pubhened fo:m 8f thig gontribution. 9 10 dliow @iners 1© do 80, for U8 Government purponss
T™he Los Alamos Nationg! Ladboratory fequents that tha publisher igentify this arucie 88 work perfermeu under 1he suspioes of the U § Depantment of Energy

Los AlBMNOS LsAkmss NetonalLaborator

PORM WD Ata Bu /tﬂ”

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS

by LINDA BRICE
and JOHN CONNELL
Los Alamos National Laboratory
Los Alamos, New Mexico

Research conducted in the case study of a large applicaticns

system shows that the two primary causes of high maintenance
costs are:

1) The frequency of user-requested changes to software; anc
2) The psychological complexity of the software.

A "tool kit" is suggested which, when applied to the design
of new systems or rewrites, will:

== produce systems which users are less likely to need
changed;

-- contribute to the reduction of psychological
complexity of code, making it easler to change when
necessary.

The tool kit is easy to use, can be applied to large or
small systems in any language on any equipment, and requires
no purchase of hardware or software.

Keywords: Applications, Maintenance,
Psychological Complexity, User Satisfaction

P. 0. Box 1663, MS-P224
Los Alamos, New Mexico 87545
(505) 667-8419
or
4418 Ridgeway Drive
Los Alamos, New Mexico 87544
(505) 662-2236

-l-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

INTRODUCTION

Maintenance ccste escalate when softwere must be changed.
Sometimes there are user-requested chenges because the
system does not meet the user's needs, and sometimes ther:
are ''bugs' because the systems and tae individual program
modules comprising those systems are not well structured.
All changes, whether necessary to fix bugs or desired to
improve cr add features, are difficult when program code is
psychologically complex.

Quantifiable costs assocliated with software applications
include: computer resources utilized by the application;
programmer staff time plus computer resource costs expended
to maintain the application; and associated user time spent
trying to learn and to use the end product.(l) The focus
of this paper is on programmer staff time expended to
maintain the application. Maintenance will be defined as
all changes required to keep a system running according to

the user's needs, including:

Fixes to programs necessitated by coding errors or
misunderstanding of user requirements;

changes to programs required due to changes in
environment or legal/regulatory changes not under
control of the user;

enhancements or optimizations which alter the processing
environment, often including minor new features.

Research perforuned in the case study of a large applications
system has shown that the number of changes applied to a

-2-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

system and psychological complexity (in particular, the
misuse of branching instructions) of the code undergoing
change both correlate positively with maintenance costs in
terms of programmer effort.(z'5
complexity,”

"Psychological
as used here, refers to those elements of

programming style which make the resulting software
difficult to maintain.

This paper is intended to suggest several aids for the
reduction of software maintenance costs. The first
suggestion is for the data processing professional to empioy
certain metrics to estimate the expense of exiscing
software. Software shown to be expensive to maintain may
then be subjected to a break-even/payoff analysis for
economic justification of a rewrite. When rewrites appear
to be economically feasible, care must be taken 3o that the
new system is indeed easier to maintain than the old.

Many data processing shops continue to maintain production
systems, despite high maintenance efforts, simply because
they work. A method of deciding just when psychological
complexity contributes enough to the maintenance costs to bhe
eccnomically unfeasible, would be beneficial. There comes a
point in time when, because of psychological complexity due
to poor initial program design, or due to many 'patches,"
that rewriting the program (or set of programs) is more
economically justifiable than continuiung to maintair it.

In order to develop new systems and rewrites of existing

ones that will have lower maintenance coets, a methodology
is needed for designing with future maintenance in mind.

Because psychological complexity is causally related to
maintenance costs, the methodology should provide a means

-3-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

for minimizii. such complexity. Since it has been
demonstrated that requests from the user for changes
correlate significantly with maintenance costs, the
methodology should also aim at maximizing user satisfactinn
with new systems and rewrites in order to reduce future
service requests.

WHEN TO REWRITE

One method for deciding when to redesign existing computer
applications involves deriving an economic break-even/payoff
analysis using a five-step process:

1) Track maintenance costs for a time period and then
project future costs, using straight line trend analysis;

2) Measure the complexity of the existing code using a
demonstrated metric.(3'4'5) This step does not
contribute directly to the break-even/payoff analysis,
but it does provide confidence that program complexity
contributes to maintenance costs;

3) Estimate cost of rewrites;

4) Estimate couts for the maintenance of the new system
after implementation;

5) Prepare a break-even/payoff analysis. In this
projection (Figure 1), maintenance costs for the present
system are shown as a straight line. Total cost for the
proposed system 38 shown as a broken line with cost to
completion of rewrite having a steep slope (it includes
cost of maistaining the present system), and cost afcer

-A-

ERT
sFE

-

I

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

completion of rewrite having a gentler slope as the new
system will be easier to maintain.

TOOL KIT FOR REWRITE

The life of software systems is traditionally viewed as a
cycle or sequence of iterative events. Recently, the life
cycle concept has come under fire.(6’7) This paper 1is not
intended to pass judgement on the life cycle concept =-- many
versions exist, not all without merit. What is proposed
here are a few techniques which will hopefully reduce the
costliness of maintenance. 1In order to describe the heipful
tools, it is necessary to assume that prior to maintenance,
software is written (as opposed to the purchase of a
package), and that the developaen® of that software proceeds
in some order decreed by management. It is suggested that
in order to minimize the number of post-implementation
requests from users for changes, users be involved in
setting ohbjectives, and that production of output
fecsimilies and prototyping occur early in the development
process.

The assumption will be made that management of DP personnel
and management of end users agree to the events which must
transpire to get the system up and running. Those events
should be scheduled in a visual form (Gantt charts, Figure
2). The events will vary from project to project, but will
necessarily include interaction with the user to describe
system functions and software development. DP and user
management meetings shculd occur prior to each major
milestone for tlhie purpose of schedule review.

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

The m: jor goal 1s inexpensive maintenance. The tools are
recommended on the merits of imposing user interaction

during design which leads to fewer user changes, and
producing lucid code which results in less effort per

change. They are:
System Requirements Definition (SRD)
Tool ~ Scheduling Guideline;
System Design - Results in System Design Documeat - (SDD)

Tools = Output Facimilles or Prototypes,
Data Flow Diagrams (DFD's),
Folicy Statements,
Data Dictionaries,

Internal Design - Results in Requirements Specification
Fackage (RSP)

Tools - DFD's cof Proposed System (from SDD),
Approved Output Formats (from SDD),
Folicy Statements (from SDD),
Data Dictionaries (completed from SDD),
Logic-Flow Charts,
Program Abstracts,
Program Design Walkthroughs.

The methods and tools mentioned are not reliant on team
makeup or on computer-bpased tooils. Nonc of the tools are
original with this paper. What 1is proposed here is the
integrated use of the tools to meet the stated goals.

-6-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

Systems requirements definition

The Systems Requirement Definition (SRD) will not be covered
in-depth in this paper because, except for the schedule,
there are no specific tools recommended. The purpose of the
URD is to identify proposed objectives, define the project
scope, define the organizaticnal units involved, identify
the end-users, ldentify make or buy approaches and construct
& rough schedule and cost/benefit for each alternative.

Cost/benefit analysis has already taken place when the
system is a rewrite. It is inherent in the break-even/
payoff analysis mentioned under "WHEN TO REWRITE." 1I1f the
system 1s an entirely new development, the assumption is
that a cost/benefit study would be necessary for a go/nc-go
decision by management at this point, prior to any actual
development effort.

The schedule is not intended to be rigid as to dates. 1t 1is
intended to identify the tasks to be performed, the parties
involved, and the order in which the tasks will be
performed. When reviews are held prior to the end of each
phase (task), the remainde. of the schedule can be reviewed
and adjusted for reasonableness.

Gladden warns that "system objectives are more important
than system requirements . . . concentrating on objectives
can go a long way to prevert a system from 'evolving' into
one that the user Joes not want or need." 7 The life
cycle wheel uwodel of system develcpment which concentrates
on viewpoints, stresses '...rejuirements analysis is viewed
as a design activity from a user viewpoint. This design is

synthesized from various (incomplete, inconsistent) user

-7-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

scenarios and other expressions of needs. The emphasic is
on what functions the system is to peirform, and how the

system Interacts with the users.(s)

The SRD is, then, the project starting point and the place
where objectives are defined.

System design

The ultimate degree of user satisfaction with a new system
or rewrite is often dcetermined in the early stages of
analysis and design. It is recommended that intensive
interviews be conducted with the user during this phase.
Such interviews should concentrate psimarily on net outputs
-~ the part of the system thact will be visible to the user
after implementation. Users may have little interest in how
data will be massaged to produce these outputs.

System design: document components

Careful users will want to know how the accuracy of the
informatioa contained in the net outputs can be guaranteed.
A System Design Document (SDD) should, therefore, contain
the following elements:

1. A brief description of the framework within which the
proposed system will operate, including:

a) ccntraints imposed by the operating environment,

b) required hardware/software configuration,
c) allowances for future contingencies;

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

2. Samples of proposed net outputs such as report layouts
and screens;

3. Proposed formats for net inputs, showing how data will
be captured at original collection points;

4. Visual diagrams of data flows for the present system
(either manual or automated) and the proposed system;

5. Policy statements gilving a decision method for each
procedure shown in the above diagram(s);

6. Rigorous definitions of all data elements shown in the
above dlagram(s).

System design: tasks

Development of the SDD components need not be undertaken in
the order given above. System Design Document development
guidelines may specify tasks to be performed in preparing
such a document, and the order in which they should be
performed.(g) The following is a brief description of

each of these tasks.

System design: tasks -- describe systeu environment

At this stage, the system designer can recognize when the
new system will exist in a physical environment which may
impose constrainte on the design. The task during this
phase should involve documenting the nature of that
environment and identifying areas which might imponse design
constraints. '

-9-

A METHODOLOGY FOR MINIMIZING MAINTENAMCE COSTS
by LINDA BRICE

System design: tasks -- describe net outputs

Examples of proposed outputs can be produced rapldly without
using actual applications software. The editor on any
system can be used to produce a text file which, when copied
to the line printer, will produce a facsinile report or
screen layout. The main advantage of this approach is that
content and format can be changed easily without modifying
software. In addition, the facsimile reports provide an
immediate focal point for user interviews. Users who tend
to be vague about system requiremerts can often be coaxed
into being more specific by discussing information contained
in the new outputs. If output formats are approved by the
user before system design 1s begun, the result should be
fewer design changes and service requests after
implementation.

If an installation has available the necessary tocls (i.e.,
flexible data bese systems), it is strongly recommended that
a prototype system be brought up at this early stage. 'It
is now recognized ... that although the customer may state
his requirements very firmly at the beginning, his
perception of the problem begins to change as he begins to

consider how the solution development ... is proceeding."(‘o)
Peters, Gladden, McCracken and Jackson all recommend rapid
(6,7,10)

prototyping to combat wholesale requirements changes.
The remainder of the SDD is charged with demonstrating that
the approved sample net outputs can be produced accurately.

System design: tasks -- describe net inputs

If the user is familiar with existing inputs, it is probably
not necessary to produce samples. There may be, however,

-10-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

implications in the above components of the design for new
methods of data capture or even entirely new data elements
to be captured. 1In this case, it is important to solicit
user approval of new input formats such as data entry
screens. The method for providing examples of proposed
input formats can be the same as that for cutput formats --
sample forms produced with a text editor being an obviously
simple manner.

Simple design: tasks -- produce data flow diagrams

For a visual representation of the flow of data between
functions performed by a system, the use of the Data Flow
Diagram (DFD) is highly recommended. DFD's have been
explained in Yourdon's structured analysis and design
technique, and is described by De Marco.(ll) Basically,
these dlagrame consist of bubbles, arrows, and parallel
lines. The bubbles represent a procedure, the parsllel
lines represent a data store, and the arrows represent the
flow of data between the procedures and data stores. The
diagrams are leveled as to degree of d: mail -- the highest
(Level 0) contains only one bubble labeled with the system
name, and shows only net inputs and outputs to the system
(Figure 3). The lowest level diagrams show elementary
procedures and data elements (Figure 4). One suggestion for
the number of descriptive levels is seven plus or minus
two. The rule also applies to the number of bubbles or
procedures per level. The diagrams should remain visually

digestable as they are the tool for user interviews in this
TUSERT
FIcu+E 3 Phase.
ﬁ
JusERT . DFD's demonstrate for the user how net inputs will b
flcuafE y A e P L €

transformed into net outputs and, therefore, serve as a

-11-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

primary check on the accuracy and completeness of the
outputs. This technique tends to minimize unnecessary or
overly complex procedures and meximize user satisfaction.

Zach of the bubbles or procedures shown in the lowest level
DFD should have an associated policy statement describing
the decision method proposed to perform the procedure.
These policy statements should be expressed in structured
English or pseudo-code so that they are unambiguous while
still intelligible to the user (Figure 5). They should be
developed in the interviews with the user so that they are,
in fact, the user's policles. Each policy statement should
correspond to a bubble on a low-level DFD.

These statements of user policy should eventually become
on-line documentaticn for production source code in the form
of prologues (abstracts) for procedure modules. Initially,
they serve as a guide to system design; later, they can
serve as a maintenance aid.

System design: data dictionary

Each of the arrows in all of the levels of the DFD's will
have a label. The SDD shculd include a 'dictionary"
defining each of these labels. The definition of a darta
label on a high-level diagram should be in terms of the
labels on the uext lowest level dlagram. At the lowest
level, each label should also be defined as to how, w«hen,
and where that element will be captured.

If the dictionary is complete and rigorous, it serves as a
proof that the usevr requirements, as expressed in the policy
statements, can be satisfied using the data defined therein.

-12-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

Each definition should correspond to the level of the DFD on
which it can be found as the label of a data flow. This
also answers the designer's question, ''what data do I need,
and where can 1 find it?"

Internal desiyn: requirements specification package

Once the SDD has been approved by the user, '"internal"
design can begin. Here, internal design will .nly address
those elements necessary to develop low-maintenarce
software. The Requirements Specification Package (RSP)
components will include:

-- Coples of the DFD's which identify program modules;
-- Approved Output (reports);

-- Data Dictionary from the SDD,

-- Policy Statements from the SDD,

-- Logic Flow Diagrams for each module (Chapin Charts);
-=- Program Abgctracts.

The Data Dictionary may be revised during this phase of the
project, and Policy Statements should contribute to the
functions listed in the program abstract.

Internal design: chapin charts

It 1s suggested that Chapin charts,(lz) Nassi-Shneiderman
Structured Flowcharts,(la) or the St-uctured Programming
Design Method (SPDM)(IA) be used to Jdescribe logic flow
for each program module. The three are similar in
philosophy, and any one can be used to bridge the gap
between module need (basic requirements) identification and
executable code. The document will be referred to here as a
Chapin chart.

-13-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

The lowest level DFD''s in the proposed system section of
the SDD represent processes in bubble format. Usually, each
of these processes identify a program module, as well as the
1nputs and outputs. Policy statements in pseudo code or in
structured English accompany the DFD's. The combination of
inputs, outputs and policy statements form the skeleton of a
Chapin chart. If a data base 1anagement system is utilized,
it will also have been defined ii.. the SDD as ''required
software configuration' under the Operating Environment. If
not, files or specific formats for data transter mechanisms
must be specified prior to construction of Chapin charts.

The Chapin chart is created based upon this cumulative
knowledge, sometimes with the addition of special processing
algorithms. The reader is referred to the references for
in-depth explanations of this logic flow chart. (12,13,14,15)
The method, in essence, consists of visuslly representing a
set of program bullding blocks which allow single entry/exit
and strictly limit branching, a practice known to increase
psychological intelligibility. The set of program
structures includes SEQUENCE, IFTHENELSE, DOWHILE, DOUNTIL,
and CASE. When used properly, then the set of combined
siructures lends itself to a well~-structured program guide
where arbitrary transfers of control are impossible. Figure
6 is an example of a Chapin chart.

The benefits of the Chapin charts are:

-~ Provisicn of a "GOTO-less'" map to be translated
directly into a programming language;

-= Provision of a document which graphic:lly depicts
logic for the purpuse of review (peer review, team
walkthrough);

14~

£ URE 6

—

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

-= Pruvision of a test bed guide.(ls)

It has been noted that Chapin charts are not devices which
provide functional hierarchy, interfaces or data

flow.(la) The contention here is that there is no
necessity for Chapin charts to respond to those needs, as
they are met by the DFD. What Chapin charts do well is
control flow of executable code within a higher level
functional design. This toolkit provides the functional
design via DFD's.

Internal design: wvalkthroughs

Approved DFD's showing processes (program modules), inputs,
outputs, policy statements, functional hierarchies,
interfaces and data flows are available from the SDD phase;
program module logic design is graphically represented via
Chapin charts. Because of the importance of structuring
program code for understandability and readibility effects
in the maintenance phase (''good" structure equals
psychologically clear code and minimum branching), the
Chapin charts should be subjected to a peer review prior to
the coding phase. The review should not only insure the
structure of the individual modules, but should double check
that elements are defined in the data dictionary, that the
process will accurately perform what was intended in the
higher level diagrams, that the outputs conform to early
protctype specifications and that a program abstract is
present. The abstract would minimally conesist of:

Purpose;
Input (arguments/files/other);

Output (arguments/files/other);

-15-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

Functions (10 or less);
Local variables;
Subprograms called;
Errors (fatal/non-fatal);
(16}

Standards viclations.

An example of a program abstract 1s in Figure 7. The
purpose of walkthroughs is improved (low-maintenance)
quality of the product. The value of walkthroughs shows up
ultimately in the maintenance phase. ''The inspection
process shifts the discovery and correction of errors and
defects from software's operational period to the early
design stages. Since the cost for software corrections
during operations is many times the cost incurred in
detectin~ problems during design, inspections provide an
unusual leveraging of cost/benefit over the entire life
cycle of the software."(17) Although a heavy commitment
is necessary for the time of team members and moderator
participation, other benefits beyond low-maintenance code
are accrued, such as ''training and exchange of technical
information among the programmers and analysts who
participete in the walkthrough.”(le)

CONCLUSION

Use of this tool kit will not guarantee that the resulting
system contains minimal psychological complexity and
maximized user satisfaction. It is possible to misuse the
tools. The intention of this paper was to explain some of
the factors that cause software to be expensive to maintain,
and to provide aids that may be useful in designing low
maintenance systems.

-16-

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

REFERENCES

1. Brice, L. "Existing Computer Applications =-- Maintain

or Redesign: How to Decide?.'" 2Proceedings of the 1981
Computer Mearurement Group Intern~ational Conference, pp.
20-28n

2. Brice, L., J. Connell, and J. Taylor. 'Deriving Metrics
for Relating Complexity Measures to Software Maintenance
Costs." Proceedings of the 1982 Computer Measurement

Group International Conference.

3. Halstead, M. H. Elements of Software Sclence. Elsevier

North-Holland: Elsevier Computer Science Library, New
York, New York, 1977.

4., McCabe, T.J. "A Complexity Measure." IEEE Transactions
on Software Engineering, (Vol. SE-2, No.l) March 1972,
pp. 308-320.

5. Connell, J. and L. Brice. 'Complexity Measures Applied
to an Applications Case Study.'" Fourth International

Conference on Computar Capacity Management Proceedings,
1982, pp. 121-128.

6. McCracken, D. D., and M. A. Jackson. 'Life Cycle
Concept Consider.d Harmful." Software Engineering Notes,
VOl. 7. NO-Z-, Aptil 1982. ppn 29-32-

7. Gladden, G. R. 'Stop the Life Cycle, I Want To Ge:
Off." Software Engjneering Notes, Vol.7, No.2, April
1982, pp. 35-39.

-17-

10.

11.

12.

13-

14.

15.

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

Yamamoto, Y., R. V. Morris, C. Hartsough, and E. D.
Callender. 'The Role of Requirements Analysis in the
System Life Cycle." Proceedings of the 1982 National
Computer Conference, pp. 381-387.

Brice, L., and F. Welch. Manual of Prccedures and
Standards. Administrative Dzta Processing Division,
Los Alamos National Labortory, Los Alamos, New Mexico,
1982.

Peters, L. '"Relating Software Requirements and
]

design.' ACM Proceedings of the Software Quality and
Assurance Workshop, 1978, pp 67-71.

DeMarco, T. Structured Analysis and System
Specification. Yourdon, Inc., New York, New York, 1978.

Chapin, N. '"'New Format for Flowcharts.'" Software
Practice and Experiences, Vol. 4, No. 4, February 1974,
pp. 341-357.

Nassi, I., and B. Shneiderman. 'Flowchart Techniques
for Structured Programming.'" SIGPLAN Notices of the
ACM, Vol. 8, No. B8, August 1973, pp. 12-26.

Marca, D. "A Method for Specifying Structured
Programs.'" Software Engineering Notes of the ACM, Vol.
4, NO- 3. July 1979. ppl 22‘31-

Yoder, C. M., and M. L. Schrag. ''Nassi-Shneiderman
Charts -- An Alternative to Flowcharts for Design."
Software Engineering Notes of the ACM, Vel. 3, No. 5,
November 1978, pp. 79-80.

-18.-

16.

17.

18.

A METHODOLOGY FOR MINIMIZING MAINTENANCE COSTS
by LINDA BRICE

Control Data Corporation: Final Report of the Aircraft
Noise Prediction Program Phase II, (Contract No.

NAS1-13983), NASA, Langiey Research Center, Hampton,
Virginia, July 1978.

Werner, F. L. '"Software Inspections: Process and
Payoifs.'" Computerworld, April 12, 1982.

Yourdon, E. Structured Walkthroughs. Yourdon. Inc.,
New York, New York, 1978.

Breakeven / Payoff Analysis

Maintenance Cost Rew-ite + Malnt.
Present System Proposad Sysgteam
_..*—____

TOTAL COST IN THOUSANDS OF DOLLARS

pa—

-

= / !

\ N
\
\

R
N
\,

Al

- .=~ BREAKEVEN POINT

—

/

- —
;’ COMPLETION OF REWRITE —
r—

|

d
v

" I J B 1 A L b deol. WO D G N) U RN [VU DR GNP SO S
a 2 4 [(-] 10 12 14 18 18 20 22 24 28

TIME IN MONTHS (Assuming rewrite takes two people six months)
Figure 1.

7. RSP: Design

8. RSP Completo
- Dictionery

Widget Division Profit/lLoss System Design Schedule

= * *

= + +

- A A A

L o o [n]

N o <> e o j

— o (o} QO {

- L::) <] N

- | X X x X X
e F U NS G & Py A e e d

JAN FEB WAR N MAY JUN SUL AUG JEP ocT NOY

Stert Date <— -> Terget Date

Figure 2.

Widget Division Profit/l.oss System

ABC PAYROLL

|
S

PROFIT/LOSS REPORT

/

WIDGET MGMT.

Level O Data Flow Diagram

RN

WIDGET PROFIT/LOSS SYSTEM

F:GURE 3.

£

CUSTOMERS

0PD€E§,/’

LOYEES, MATERIALS

\\e ABC ACCTG.

LABOR

EMPLOYEES

———-

PROFIT/LOSS REPOATS

WORK—-ORDERS
1.4
COMPUTE PROFIT/L0SS

6/L COST FILE

WORK- IN-PROGRESS DATA BASE

—_—— e}

——m

l;ABC PAYROLL

s
ATTENDANCE RPT.

FIGURE 4. m

LEVEL 14
WIDGET PROFIT/LOSS SYSTEM DATA FLOW DIAGRAM m

(*) REVENUE = LABOR * CHARGE-RATE
COST = (LABOR * SALARY RATE) + OVHD-PER-WORKEI

POLICY STATEMENT 1.1
SELECT OVERHEAD COSTS FOR
WIDGET DIVISION

For each ABC Company General Ledger cost record
pertaining to Widget Division:

Add salaried employees and hourly employees to
employee count;

Add material costed to material-costed sum;

Pass employee count and material-costed sum to 1l.2.
For eacli ABC Company Procurement record pertailning to
Widget Division:
Subtract from material-costed sum those purchase
orders involving contract labor, resulting in

overhead costs.

Pass overhead costs to 1.2 for use in management
report.

Divide overhead costs by employee count, resulting in
overhead-cost-per-worker.

Update the work-in-progress data base with overhead-
cost-per-worker.

FIGURE 5.

CHAPIN CHART FOR POLICY STATEMENT 1.1

SELECT OVERHEAD COSTS FOR WIDGET DIVISION

~ { ENTER
READ FIRST G/L COST RECORD

DO WHILE MORE G/L COST DATA TO PROCESS

IS THIS A WIDGET DIVISION
RECORD?

YES NO

ADD SALARIED-EMPLCYEES TO
EMPLOYEE-COUNT

ADD HOURLY-EMPLOYEES TO

EMPLOYEE-CCUNT
NULL

ADD MATERIAL-COSTED TO
MATERIAL-COSTED-SUM

PASS EMPLOYEE-COUNT AND
MATERIAL-COSTED-SUM TO
REPORT ROUTINE

READ NEXT G/L <OST RECORD

READ FIRST FROCUREMENTS RECORD

DO WHILE MORE PROCUREMENT DATA TO PROCESS

1S THIS A WIDGET DIVISION
RECORD?

YES NO

1S IT A CONTRACT-LABOR

¥.0.7

YES NO

NULL
SUBTRACT CONTRACT-LABOR NULL
FROM MATERIAL-COSTED-S5UM
GIVING OVERHEAD-COSTS

READ NEXT PROCUREMENTS RECORD

PASS OVERHEAD-CGOSTS TO REPORT ROUTINE

DIVIDE OVERHEAD-COSTS BY EMPLOYEE-COUNT GIVING OVERHEAD-COST-
PER-WORKER

UPDATE WORK-IN-PROGRESS DATA BASE WITH OVERHEAD-COST-PER-WORKER

EXIT

Figure 6.

PROGRAM ABSTRACT

PROGRAM NUMBER: 56-311

SYSTEM DESIGN NUMBER: 56

DATA FLOW DIAGRAM NUMBER: l.1

PROGRAM NAME: SELECT OVERHEAD COSTS FOR WIDGET DIVISION
AUTHOR : C. G. POND

PURPOSE: DETERMINE OVERHEAD COSTS FOR WIDGET DIVISION
INPUT: 1. GENERAL LEDGER COST FILE

(EXTERNAL FILE NAME = D701294)

2. GENERAL LEDGER PROCUREMENTS FILE
{_ATERNAL FILE NAME = D70101A)

OUTPUT:

FUNCTIONS: 1.

LOCAL VARIABLES:

SUBPROGRAMS CALLED:

1. OVERHEAD COST REPORT
2. UPDATED WORK-IN-PROGRESS DATA BASE

FOR EACH ABC COMPANY GENERAL LEDGER COST FOR
THE WIDGET DIVISION, EXTRACT EMPLOYEE COUL1S
AND COST OF MATERIAL TO DATE.

REDUCE THE MATERIAL COST BY THE AMOUNT OF
CONTRACT LABOR.

CALL A SUBROUTINE TO PRODU"E AN OVERHEAD
COST REPORT, PASSING THE EMPLOYEE-COUNT, THE
ORIGINAL MATERIAL-COST, AND THE MATERIAL
COST REDUCED BY CONTRACT LABOR.

UPDATE THE WORK-IN-PROGRESS DATA BASE WITH
OVERHEAD COST PER WORKER. (REDUCED MATERIAL
COST DIVIDED BY NUMBER OF EMPLOYEES.)

MATERIAL-COSTED-SUM
OVERHEAD-COSTS
EMPLOYEE-COUNT
OVERHEAD-COST-PER-WORKER

1. 56-312
PRODUCE. OVERHEAD=-COST REPORT

COMPILATION OPTIONS = COBOL5, EL=T, LO.

ERRORS: NONE

STANDARDS VIOLATIONS: NONE

Figure 7.

